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Quantum Field Theory II -
Interacting Fields and Scattering

Nic Ford

1 Introduction
This article is part of a series on physics for mathematicians, and the second in a sub-series on
quantum field theory. It’s a direct sequel to the first quantum field theory article, so if you plan
to read this article I recommend being familiar with the content of that one first.

In the previous article, we discussed in detail how to build a quantum version of a Klein–
Gordon field theory, and how the result can be interpreted as a theory of noninteractingmassive
scalar particles. In that story, we were able to build a Hilbert space, find an operator to serve as
the Hamiltonian, and explicitly write down a basis of eigenstates of the Hamiltonian, essentially
“solving” the entire theory.

In this article, we’re going to turn to the topic of interacting quantum field theories, which
are the ones that aremeant to describe the way that the elementary particles of the universe
actually behave. Specifically, we’ll examine scattering processes, which are processes in which
some number of particles collide with each other, producing some new collection of particles
which are thenmeasured by some experimental apparatus.

Aswewill see, it is far fromclearhowtodescribe stateswithevenone particle inan interacting
QFT, so the bulk of this articlewill be spent on thequestionof how todefine the states involved in
a scattering process. Wewill then close with a formula that expresses the probability amplitudes
resulting from a scattering process in terms of an object we’ll call the “time-ordered <-point
function” of a quantum field operator. The advantage of this formula is that this latter quantity
is something we can explicitly compute, although the actual computation will have to wait until
the next article in this series.

One big conceptual difficulty inmaking the transition to interacting theories comes from
the fact that free theories are essentially the only ones that admit exact solutions of the type we
were able to contruct last time. As we’ll see momentarily, this means we’ll have to take a less
direct approach. There is a lot to be said about how a particle description can still emerge in
this new context and how to describe the way particles interact, but it won’t come in the form of
an explicit description of the eigenstates of the Hamiltonian.

In addition, it is at this point that themathematical difficulties inherent to quantum field
theory start to show up in a truly unavoidable way. The problem is in fact quite severe: the
mathematical objects that we’re going to bemanipulating here do not actually exist, or at least
no one has come up with a way to construct them.

Because of this, I think it’s best to regard the computations we’ll be doing not as statements
that could be turned into formal proofs but as descriptions of how a hypothetical working
theory of quantum fields ought to behave. Even though we can’t build the objects we want, it
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is often clear how theywould behave if they did exist, and we can often get good quantitative
predictions out at the end. But, in the absence of a formal construction, you can’t take these
computations too literally.

Somemathematical physicists working in this area have developed an axiomatic approach,
where the properties wemight want a quantum field theory to have are codified in a formal list
of axioms, and the physical results we want can (sometimes, partially) be shown to follow from
the axioms. The problem then expresses itself in the fact that no one can prove that an object
satisfying the axioms actually exists.

I have chosen not to take such a formal approach here for a couple reasons. First, andmost
importantly, on one’s first pass through thematerial I think it’s best to aim to get a feel for the
physical content of the theory, and it’s easy to lose sight of “the point” when you’re spending
a lot of timemanipulating inequalities. Second, writing the article in this way wouldmake it
much longer and less interesting, and frankly I don’t feel like I can improve on the existing books
on axiomatic quantum field theory.

My approach instead is going to be closer to that of the physicists— I’ll treat distributions
like they’re functions, not worry toomuch about convergence, and occasionally rely on physical
rather thanmathematical arguments for why some result ought to hold. My hope is that even
readers who are interested in the rigorous approachmight still find it useful to see this rough
map of the trail before traversing it more carefully themselves.

In themany years I’ve been preparing to work on this series, I’ve read a lot of quantum field
theory books. I relied heavily on three of them for this article in particular. They are Anthony
Duncan’s The Conceptual Framework of Quantum Field Theory, Huzihiro Araki’sMathematical
Theory of Quantum Fields, and the book Quantum Field Theory Lectures of Sidney Coleman,
which was compiled after Coleman’s death from lecture notes and videos of his courses.

The Coleman book is probably overall the best QFT textbook I’ve come across among the
ones written by and for physicists, and Duncan is a great source if you would like a somewhat
more formal and rigorous treatment than the one I’ve given here. Araki’s book takes a very
rigorous, axiomatic approach to the entire subject, with lots of integrals and inequalities and
epsilons. It is somewhat challenging to get through (and to get used to his notation) but I found
that the parts I spent time with clarified a lot of things for me.

I am grateful to Harry Altman, Mithuna Yoganathan, and JordanWatkins for looking over
earlier versions of this article.

Notation and Conventions
Our conventions are mostly the same as in the previous article in this series; I’ll repeat the
relevant ones here for ease of reference.

We will use the physicists’ “bra-ket” notation for elements of a Hilbert space. In this conven-
tion, a “ket” like |k〉 denotes an element of the Hilbert space, and 〈k ′ |k〉 is used for the inner
product ofk ′ andk . A “bra” like 〈k | can be thought of as an element of the dual space.

For an operator �, you will sometimes see expressions like 〈k ′ |� |k〉. This can be thought
of as either the inner product ofk ′ with �k or as the inner product of �†k ′ withk , where we
use the physicists’ convention of writing �† for the adjoint. In particular, if � is an observable,
then 〈k |� |k〉 is the expected value of � in the state |k〉. It will be useful to remember that the
complex conjugate of 〈k ′ |� |k〉 can be written 〈k |�† |k ′〉, and that the dual of the ket � |k〉 is
the bra 〈k |�†.

Unlike in the previous article where we switched between the Schrödinger and Heisenberg
pictures, from now onwe are working purely within the Heisenberg picture, where observables
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depend on time and states don’t. This means you should think of a state as specifying the entire
history of the system in question, not a snapshot of it in time.

We will always use units where 2 = ℏ = 1, and our inner product on spacetime follows the
“mostly minus” convention, where

(B , F, G , H) · (B ′, F ′, G ′, H ′) = BB ′ − FF ′ − GG ′ − HH ′.

In particular, for any F ∈ R4, we’ll write F2 = F · F . We will extend this notation to partial
derivative operators, in particular writing

m2 = m2B − m2F − m2G − m2H .

Wewill reserve italic letters for scalars, operators, andpoints inR4, and follow the convention
that vectors inR3 are denoted by boldface letters like x. Squared norms of vectors inR3 will be
denoted |x |2.

Wewill follow the convention, more common for physicists thanmathematicians, of writing
integrals over spacetime as

∫
34F and integrals over space as

∫
33x.

The symmetries of spacetime are given by elements of the Poincaré group, which is the
connected 10-dimensional Lie group generated by spacetime translations, spatial rotations,
and boosts. The subgroup of the Poincaré group consisting of those elements that fix the origin
is called the Lorentz group. It is also connected, it has dimension 6, and it is generated by
spatial rotations and boosts. The Lorentz group can also be described as the group of linear
automorphisms of R4 which (i) preserve the inner product, (ii) are orientation-preserving,
and (iii) preserve the forward time direction; the Poincaré group can then be described as a
semidirect product of the Lorentz group withR4.

In the last article, we had occasion to talk about both a classical field q and its operator-
valued counterpart, which we called q̂ . In this piece, the classical field plays essentially no role,
so for ease of readingwe will drop the hat from the field operators going forward.

2 Interacting Quantum Field Theories
In the last article, we focused on a free scalar field theory. The theory we examined arises from
the Lagrangian

! (q, mBq) =
1
2

∫
33x

[
(mq)2 −;2q2] ,

which gives rise to classical equations of motion described by the Klein–Gordon equation,
(m2 + ;2)q = 0. After a decent amount of work, we were able to build a quantum version
of this theory, and we saw that it looked like a theory of free relativistic particles of mass;.
We were able to give a nice, explicit description of the Hilbert space this theory takes place
in— as the Fock space F (L2 (R3))—and give a correspondingly explicit description of how
the Hamiltonian acts on this Hilbert space, along with the generators of spatial translations,
rotations, and boosts.

This theory is, of course, not a great description of the universe, since nothing physically
interesting happens in it. It is, as we said when we constructed it, a free quantum field theory,
whichmeans that every state is a superposition of<-particle states inwhich each particlemoves
in the same direction forever without interacting with anything. The theories which actually
have interesting physics are called interacting theories.
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“Interacting” in this context just means “not free,” and, conceptually at least, we arrive at
an interacting quantum field theory by following the same process we went through in the last
article except starting from a different Lagrangian. Like the one that gave rise to our free theory,
all of the Lagrangians that we’ll consider will have the form of an integral over space, that is, we
will have something like

! (q, mBq) =
∫

33x L(q (x), mBq (x)),

where L is a scalar-valued function called a Lagrangian density. (There are deep reasons,
having to do with relativistic causality, for restricting attention to Lagrangians that come from a
density, but we’re going to postpone any further discussion of this for now.)

It’s commontoarriveat aLagrangiandensity for an interacting theoryby starting fromone for
a free theory and adding a small “perturbation” term to it. For example, a very common example
in textbooks starts from the Klein–Gordon field, whose Lagrangian density is 1

2 ((mq)
2 −;2q2),

and adds on a small term proportional to q4, giving

L =
1
2 ((mq)

2 −;2q2) − _

4!q
4.

(This example is called the “q4 theory.” The 4! is there for later convenience, and theminus sign
is tomake sure the energy is still bounded below. While it might be useful for concreteness to
keep this Lagrangian in the back of your mind while reading the rest of this piece, nothing we’re
about to do will actually depend on any details about its form.)

It’s certainly not the case that these are the only Lagrangians one could possibly write down,
but when studying Lagrangians like this, the hope is that our knowledge of the free theory
will help us to get at least approximate results for the interacting theory when _ is sufficiently
small. In pratice, these are often perturbative results, meaning that the relevant quantities
are expressed in terms of a power series in _which we can, with enough computational effort,
compute to any desired order in _. While it’s certainly not true that every quantitative result in
quantum field theory is perturbative, I think it’s fair to say that the best-understood andmost
precise ones are, and that is where our focus will be for most of this series.

In particular, it will basically never be possible in an interacting quantum field theory to
prove any results nearly as nice as the ones we got for the free theory. We will see later in this
article that there will often be one- andmulti-particle states in an interacting theory but, unlike
in the free theory, we won’t be able to get a simple closed-form expression for them in terms of
field operators, or even to prove that states with the relevant properties exist.

2.1 Informal Axioms of Relativistic QFT
Given this, a natural question arises: which features of the free theory carry over to this more
general setting? As discussed in the introduction, we are not taking a completely rigorous
axiomatic approach to this story, but it is still useful to discuss our foundational assumptions
on a less formal level. We will assume:

• Our states live in a separable Hilbert spaceH . There is an action of the Poincaré group—
that is, the group of spacetime translations, rotations, and boosts—onH which describes
how transformations of spacetime affect our states. (Recall throughout this discussion
that we are using the “Heisenberg picture” of states and observables, where observables
depend on time and states don’t.)
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• There is a collectionof fieldoperatorsonH indexedbypoints in spacetime. Conceptually,
you should think of these as observables in the sense of ordinary quantummechanics,
corresponding to measuring the value of the field in question at the specified point in
spacetime.

– In our example so far, there’s been just one field, which we called q (F). In general,
there might be several.

– The single field in our Klein–Gordon example was a scalar field. In the perspective
we’re introducing right now, the scalar-ness of the field amounts to a rule for how
the field operators interact with the Poincaré group action: if* (6 ) is the action of a
spacetime transformation 6 , we have* (6 )q (F)* (6 )−1 = q (6 .F). In future install-
ments we’ll consider vector- and spinor-valued fields, for which the corresponding
formula is somewhat more complicated.

• Any two field operators q7 (F) and q 8 (G ) commute if F and G are spacelike separated.
(When some q satisfies [q (F), q (G )] = 0 whenever F − G is spacelike, we call q a local
field operator. This is the generalization of one of the equal-time canonical commutation
rules we imposed in the Klein–Gordon example. We’ll discuss the other commutation rule
in amoment. This is the version of the condition for boson fields, which are all we’ll be
studying for awhile; for fermion fields, the commutation is replacedby anticommutation.)

• We have a Lagrangian density which is a function of the fields and their derivatives. From
our initial Lagrangian, we can extract a Hamiltonian by performing the usual procedure
of finding the conjugatemomentum variables and performing a Legendre transform. The
Hamiltonianwill have the form �̂ =

∫
33x Ĥ (q (x), mBq (x)), andwecall Ĥ aHamiltonian

density. As always in quantummechanics, the time translation part of the action of the
Poincaré group is given by 4−7B �̂ .

• Again as in ordinary quantummechanics, just as the Hamiltonian (that is, energy) is the
generator of time translation, we identify the components of (spatial) momentumwith
the generators of space translations. Just as we did in the Klein–Gordon example, it’s
convenient to combine all four of these operators into a four-vector % = (�̂ , %F , %G , %H ).
This, combined with the previous bullet point, means that the element of the Poincaré
group corresponding to translation by 0 ∈ R4 is given by 4−7% ·0 .

• We will assume there is a single simultaneous eigenstate |Ω〉 of all four components of
% with eigenvalue 0, and we’ll call this state the vacuum. This condition is equivalent
to requiring that |Ω〉 is preserved by all spacetime translations; we will further assume
that it is also preserved by the rest of the Poincaré group. (Youmight recall that when we
discussed the free theory in the last article we called the vacuum |0〉. In this series we’ll
follow the common convention in physics of reserving the notation |0〉 for vacua of free
quantum field theories and use |Ω〉 for interacting theories.)

• Alsoas in theKlein–Gordonexample, the fact that spaceand time translationsall commute
means that all the components of % are simultaneously diagonalizable, so we can talk
about eigenvalues of % as a whole. Because % is the observable corresponding to the
total energy-momentum of the state, its eigenvalues ought to all be relativistically valid
energy-momentum vectors. We will therefore assume that the spectrum of % is entirely
contained in the (closed) forward light cone, that is, all eigenvalues of % are timelike and
have a nonnegative time component.
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2.2 Understanding the Axioms
It’s worth taking some time to reflect on what picture of quantum field theory is suggested by
these axioms. With all the discussion of themathematical difficulties involved in building the
theory, it’s easy to lose sight of the fact that, on a conceptual level, a quantum field theory is
just a quantummechanical systemwith infinitely many degrees of freedom, and that is a very
useful mental picture to hold onto. States are still represented by vectors in a Hilbert space,
observables are still self-adjoint operators on that Hilbert space, and time translation is still
governed by a Hamiltonian. The conceptual leap from quantummechanics to quantum field
theory is in this sensemuch smaller than the leap from classical to quantummechanics.

It can even be useful to imagine it as a limit of a sequence of ordinary quantum-mechanical
systems, each of which has a large but finite number of degrees of freedom. This is in fact the
approach taken in lattice quantumfield theory, in which the points of spacetime are replaced by
points of a finite grid. Lattice QFT has the advantage of being possible, if very cumbersome, to
put on a computer. This has turned out to be a good way to analyze theories like quantum chro-
modynamics, the theory of the strong force, which are not amenable to the sort of perturbative
computations we’re building toward here.

Those mathematical difficulties still exist, of course. It is possible, at the expense of a lot
more hand-wringing about functional analysis, to be a lot more careful than we are going to
be here. The axioms in this last are, in fact, a very stripped-down version of what are known as
theWightman axioms. Probably the biggest difference between theWightman axioms and our
list involves an issue that we spent a bit of time on in the previous article: in themore formal
version, fields are represented by operator-valued distributions rather than simply operators
indexed by points in spacetime. Indeed, we saw that even in the free theory an object like q (F)
has a delta-function-like singularity near F , and so doesn’t actually represent a well-defined
operator on the Hilbert space.

(A very attentive reader might notice a potential problem here: our example interacting
Lagrangian above contained a term proportional to q4, which, if we are to be fastidious about
treating q like a distribution, involves multiplying distributions, which is complete nonsense.
This is indeed a big problem, and is a major contributor to the somewhat famous fact that the
integrals that arise in QFT computations have a tendency to diverge. We will deal with this
problemmuch later in this series, when we take up the theory of renormalization.)

In this article, we are going to brush issues like this under the rug. Our goal is not to prove
rigorous theorems about interacting quantum field theories from a precise list of axioms. It is
possible to prove the result we’re aiming for in this piece rigorously from theWightman axioms,
but inmy opinion doing this on one’s first exposure to the theory obscures more than it helps.
Our attitude is instead going to be closer to the one you might take when reading a physics
book: what follows should be thought of as a plausibility argument, or as an informal case for
the way a quantum field theory ought to behave, rather than as a proof. (The utility of proving
everything formally from theWightman axioms is also lessened by the fact that no one has been
able to rigorously construct a quantum field theory that both obeys theWightman axioms and
alsomodels anything physically realistic.)

Finally, perusing this list and comparing it to what we did last time might also lead to a
question about the canonical commutation relations, which in our discussion of free fields had
the form [q (B , x), q (B , y)] = 0 and [q (B , x), c (B , y)] = 7X (x−y). The first of these appears above
as our locality assumption, but we never mentioned the second.

It is possible in this framework to define the conjugate momentum variable c (F)— in fact,
you need to in order to get an expression for the Hamiltonian out of the Lagrangian— so one
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could easily add on the second commutation relation as an additional assumption. The simple
answer to why we have not done this here is that we won’t need it. In addition, it will often be
convenient to (for example) rescale field operators like q , which would slightly change the form
of this commutation relation, and therefore having it in our list of axiomswould be inconvenient.
It is absent from the formal Wightman axioms as well for similar reasons.

3 Finding Particle States
The list of properties above that we are postulating for an arbitrary quantum field theory covers
most of what we were able to establish for the free field theory in the previous article in this
series. There is onemissing piece, though: where did the particle states go? The claim is that
we’re in the process of describing the framework that, among other things, gives rise to the
Standard Model of particle physics, and if this program is going to be successful it must be
possible to identify some states in the Hilbert space that correspond to individual particles.

3.1 The One-Particle Subspace
In order to do this, it will be helpful to note a couple features of the particle states that we were
able to find in the free theory. Recall that, in the free theory, we were able to identify the Hilbert
spaceH with a Fock space, which was an orthogonal direct sum of “<-particle” subspaces. Each
of these subspaces is separately preserved by the Hamiltonian and themomentum operators
(and therefore by all spacetime translations), and the <-particle subspace is generated by states
of the form 0† (p1) · · · 0† (p<) |0〉 for arbitrary momentum 3-vectors p7 .

These states give a complete set of eigenstates of the four-vector-valued operator % =

(�̂ , %F , %G , %H ); the eigenvalue of such a state is>1 + · · · +>< , where we write> = (lp,pF ,pG ,pH )
and lp =

√
|p|2 +;2. All together, this means that the spectrum of % looks like this:

p

E

Here the F-axis stands in for the three spatial components of> , and the G -axis for the single
time/energy component. The point on the bottom, indicating an eigenvalue of 0, corresponds
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to the vacuum. The red hyperbola partway up the graph—which is the hyperbola>2 = ;2 —
corresponds to the one-particle subspace, and the region on the top corresponds to all the <-
particle subspaces for < ≥ 2. Note, in particular, that we do not just get a stack of disconnected
hyperbolas in the spectrum for themulti-particle states. This is because any > with>2 ≥ (2;)2
can bewritten as a sumof>7 ’s with>27 = ;2, not just the oneswhose norms are integermultiples
of;.

The existence of an action of the Poincaré group on the Hilbert space, along with the fact
that the operators appearing in % are the generators of the spacetime translation portion of this
action, imply that the spectrum of % is preserved by rotations and boosts. That is, if � is a boost
or rotation and> is an eigenvalue of % , then �> is also an eigenvalue of % . (It’s worth trying to
prove this to yourself if it’s not obvious.) Therefore, all of the information we’d want to extract
from the spectra of the four components of % can actually be extracted just from the single
operator % 2 = �̂ 2 − % 2

F − % 2
G − % 2

H . This operator has an isolated eigenvalue at 0 corresponding
to the vacuum, an isolated eigenvalue at;2 corresponding to all the one-particle states, and a
continuous spectrum starting at (2;)2.

Now imagine we have an interacting quantum field theory whose Lagrangian is a small
perturbation of the Klein–Gordon Lagrangian. (For concreteness, you can imagine the q4

theory described in the previous sectionwith a very small value of_.) If the perturbation is small
enough, youmight imagine that it would have a correspondingly small effect on the spectrum
of % 2, and in particular that theremight still be an isolated eigenvalue of % 2 sitting between 0
and the continuous portion of the spectrum. (There’s no reason to suppose this eigenvalue will
still be;2, though, and no reason to suppose the continuous portion still starts at (2;)2.)

When we talk about a “one-particle subspace” in an interacting quantum field theory, this
will be what wemean: an eigenspace of % 2 with an isolated eigenvalue. If the eigenvalue is `2,
then we’ll say ` is themass of the particle. (By the assumption in the previous section about
the spectrum of % lying in the forward light cone, the eigenvalue will always be nonnegative.)
Any state in this subspace will be called a “one-particle state.” We can take the eigenspace
and split it up further according to the eigenvalues of the four-vector-valued operator % ; then,
if |k〉 is a one-particle state with % |k〉 = > |k〉, then |k〉 is the state of a single particle with
energy-momentum > . We will of course then have >2 = `2, and our assumptions about the
action of the Poincaré group imply that it will act on the energy-momentum of the state in the
expected way.

We will, for now, also assume that our one-particle states are scalar particles. For our
purposes, thismeans that aone-particle state is determined just by itsmomentum(justifying the
notation |>〉withno extra adornments) and that, for anyboost or rotation� in the Lorentz group,
�.|>〉 is a scalar multiple of |�>〉. Like the corresponding restriction to scalar field operators
mentioned earlier, we’ll examine this assumption when we come around to discussing spin in a
future installment in this series.

3.2 Some Caveats
Our picture of particle states in the free theory was quite straightforward, and the preceding
discussion implies that many of its features might be replicated in an interacting theory. It’s
therefore important that we spend some time on what is not the same.

First, we are not claiming thatwe can somehowprove that% 2will have an isolated eigenvalue
in the right place. We are sayingmerely that, if it does have such an eigenvalue, then we have
states in the Hilbert space that have the properties we expect from one-particle states. Indeed,
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as I’ve said before and will say again, essentially no interacting quantum field theories have
exact solutions of the type we were able to produce for the Klein–Gordon field. A lot of the
structure we’ll use to get quantitative results from interacting quantum field theories will have
to just be postulated in this way; this is true for the properties listed in the previous section as
well as the one under discussion now. In particular, there won’t be a nice formula for creation
and annihilation operators in terms of the field operators (although in the final section of this
article we’ll get part of the way there).

In fact, there are some interacting quantumfield theories where it’s believed that there aren’t
one-particle states in the interacting theory corresponding to the ones from the free theory. The
theory of the strong force, where there are (conjecturally) no one-quark or one-gluon states
in the interacting theory even though there are such states if you turn the interaction off, is
probably themost famous example of this.

The second point worth emphasizing is that even if we have the conditions in place for this
description of the one-particle state space to exist, there is no reason to expect themulti-particle
portion of the state space to resemble the situation for the free theory nearly as closely. Indeed,
if each of the <-particle state spaces were still generated by eigenstates of % , that wouldmean
they were invariant under spacetime translations, which completely removes the possibility
of interaction: any state that started off with some collection of particles with some specified
momenta would have to remain that way forever, since that’s what it means to be preserved by
time translations. The description of this portion of the state space— and, indeed, the reason
it is even appropriate to call these states “multi-particle” states at all — is going to be much
subtler, and we’ll discuss it more a bit later on in the article.

Third, the requirement that the eigenvalue of % 2 corresponding to our particle is separated
from 0 is only appropriate formassive particles. There are theories withmassless particles—
photons are themost famous example— and handling them in this framework is a lot more
delicate. We will, for now, avoid this problem by assuming that all our particles are massive, but
wemight or might not come back to this question in a future installment.

Finally, a one-particle state that is an eigenstate for % is necessarily corresponds to a stable
particle, because the state is preserved by spacetime translations and so in particular persists
for all time. It is possible, but more complicated, to handle unstable particles in this framework,
and again we will not worry about this possibility for now.

4 Scattering and the LSZ Formula
With the place of one-particle states in the theory established (or, at least, as established as it’s
ever going to be) we now turn to the question of multi-particle states. As mentioned in the last
section, these states represent a much larger conceptual break with the free theory: if particles
are meant to interact with each other in interesting ways, multi-particle states shouldn’t be
eigenstates of % .

Because our goal is partly to describe these particle interactions, though, we’re going to
need some way to describe states withmore than one particle. The specific situation we’ll aim
to analyze in detail is called scattering. In a scattering experiment, some number of particles
(usually two) start out very far away from each other with some specifiedmomenta and collide
at the origin around time B = 0. After a while, another collection of particles can be found
having emerged from this mess, again very far away from each other. The goal is to compute
the probability amplitude for a particular set of particles with a particular set of momenta to be
the ones that result from the scattering.
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Our ultimate goal in this section will be something called the LSZ formula (named after the
paper by Lehmann, Symanzik, and Zimmermann where it was first written down) which relates
these scattering amplitudes to certain expectation values of products of field operators in the
vacuum state. The big advantage of this is that the latter quantities are what it will be possible
to compute, at least approximately; as we will see in the next article in this series, it is at this
point that the famous “Feynman diagrams” show up.

Finally, I want tomake a note aboutmathematical precision. Asmentioned earlier, while
it’s possible to prove most of what follows rigorously from the Wightman axioms, we’re not
going to do that here. Our approach is insteadmodelled on the one you’ll find in physics texts
(in particular, I took a lot from Chapters 13 and 14 of Sidney Coleman’s book) because I think
it is much easier to understand the physical content of the argument when you aren’t busy
proving bounds. It’s perhaps worth noting that all of themore rigorous treatments will use a
more complicated definition of all the objects we’ve about to discuss.

If you are interested in amore rigorous version, I recommend Chapter 5 of Araki’s book or
Chapter 9 of Duncan’s book and the references he cites there. There is also a recent paper by
John Collins called “A new approach to the LSZ reduction formula” which stays closer to the
“standard” LSZ story than either of the books I just mentioned while also being much more
careful than I am about to be with the analytic details.

4.1 Interpolating Fields
In the free theory, the field operators and the particle states were very closely related to each
other: the creation operators 0† (p), whichmake one-particle states when you apply them to
the vacuum, were expressible in terms of the field operators q (F), and vice versa. (If we had a
free field theory withmore than one type of field operator in it, exactly the same logic would
producemore than one type of creation operator, and therefore more than one type of particle
state, but we’ll stick to the case of one particle type for simplicity.) We therefore have a very tight
relationship between the field operators and the particle states.

In an interacting theory, the situation is not as nice. We no longer have a formula for creation
operators in terms of the fields appearing in the Lagrangian. Unfortunately, the only objects
we actually know anything about are these field operators and the vacuum state, so if we are
expecting to build particle states that we can actually use to perform a computation, these are
the tools we’ll have to use. We can turn to the free theory for some inspiration. In the free theory,
we have

q (F) |0〉 =
∫

33p
(2c)3/2

√
2lp
[0 (p)4−7> ·F + 0† (p)4 7> ·F ] |0〉,

which lives entirely within the one-particle subspace of the Hilbert space, since each 0† (p) |0〉 is
a one-particle state and each 0 (p) |0〉 is zero.

This might inspire us to look for particle states in an interacting theory by applying a field
operator to the interacting theory’s vacuum state |Ω〉, which leads to the following definition.
Let’s supposewehave somefield operator� (F) andaone-particle statewith energy-momentum
> , which we’ll label |>〉. We will say that � is an interpolating field for this state if applying � (F)
to the vacuum results in a state with nonzero overlap with |>〉, that is, if

〈> |� (F) |Ω〉 ≠ 0.

In the free theory, our argument that q (F) |0〉 was a pure one-particle state relied on the
expansion of q (F) in terms of creation and annihilation operators, so there’s no reason to

https://arxiv.org/abs/1904.10923
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suppose this will still happen in an interacting theory. In general, even if � is an interpolating
field for some particle, you should imagine that � (F) |Ω〉 is an unmanageably complicated
superposition of one- andmulti-particle states.

You definitely shouldn’t imagine that there is some algorithm for inspecting a one-particle
state andproducing an interpolatingfield operator. Our resultswill instead all have the following
form: given a field operator �, if there happens to be a one-particle state |>〉 for which � is an
interpolating field, thenwe can deduce that some quantity pertaining to these particles can be
computed by some expression involving � and the vacuum state.

Furthermore, the relationship between fields and particles is very far frombeing one-to-one;
a given particle state will in general be interpolated bymany different fields, and it’s entirely
possible for a given field to not interpolate for any particles at all. (This is the expected situation
for the quark and gluon fields in the theory of the strong force, for example.) There is also no
need for� to be one of the “elementary” fields appearing in the Lagrangian; wemay, for example,
want to use a polynomial in those fields instead.

If a given particle can be interpolated by one of the fields appearing in the Lagrangian,
then it’s called an elementary particle. If it instead can only be interpolated by some more
complicated polynomial in those fields, it’s a composite particle. In the StandardModel, the
composite particles include things like the proton along with (assuming one could somehow
prove they were actually stable) more complicated “bound states” like atoms andmolecules.

Our presentation won’t really be rigorous enough to see in detail where this assumption gets
used, but wewill also require that � be a local field operator in the sense discussed above, that is,
[� (F), � (G )] = 0when F −G is spacelike. Thiswill happen if, for instance,� (F) is a polynomial in
the (also local) fields appearing in the Lagrangian all evaluated at F , which is a typical situation.

Some Conventions
Going forward it will be somewhat helpful to insist on another couple of properties of � and |>〉;
while they are not part of the definition of interpolating fields, they are part of the hypotheses of
the LSZ formula, and now is as good a time as any to introduce them.

First, there is a question about how to normalize the one-particle states |>〉. Near the end of
the previous article, we defined a version of the creation and annihilation operators that played
more nicely with Lorentz transformations by setting

U (>) = (2c)3/2
√
2lp0 (p).

If we use this operator to create one-particle states in the free theory and denote those states
by |>〉, then for any Lorentz transformation � we have �.|>〉 = |�>〉, with no extra l’s hanging
around.

This does come at the cost of slightly more complicated inner product relations: we have

〈> ′ |>〉 = (2c)3 (2lp)X (p − p′),

but the tradeoff ismore than worth it. We will choose to normalize the one-particle states in our
interacting theory in the same way.

Next, pick any point F ∈ R4, and let) (F) be the unitary operator that translates states by F .
Because of the translation-invariance of the vaccum state, we have that

〈Ω|� (F) |Ω〉 = 〈Ω|) (F)� (0)) (F)−1 |Ω〉 = 〈Ω|� (0) |Ω〉,
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that is, it’s a constant that doesn’t depend on F . We are going to ask for this constant to be 0,
which can be accomplished after possibly subtracting a constant from �. (This doesn’t change
anything about which particles � is an interpolating field for.)

Finally, I encourage you to verify that the quantity

〈> |� (0) |Ω〉

is a Lorentz-invariant function of> . (The argument uses our postulates about how the Lorentz
group acts on both |>〉 and �.) This means that it actually can depend only on>2 and the sign of
the time component of> . But for all our one-particle states,>2 = `2, and its time component is
always positive, so in fact once again this quantity is actually a constant. This constant will be
given the name / 1/2. (This slightly weird convention originates from the relationship between
particle states and poles in the two-point function, which we’ll explore in the next article in this
series.) Note that this implies that

〈> |� (F) |Ω〉 = / 1/24 7> ·F

for all F .

4.2 A Replacement for the Creation Operator
The point of the interpolating field concept for our present purposes is that it will help us to
create the states that appear in a scattering experiment, and which will give rise (after some
computation) to the promised LSZ formula.

In the free theory, again, we built multi-particle states by repeatedly applying creation
operators to the vacuum. Though we never wrote this formula explicitly, it is a straightforward
but tedious computation to show that the Lorentz-invariant version of the free creation operator
is related to the field operator via the following formula, which holds for any choice of B :

U† (>) = 7
∫

33x
[
−7lpq (F) − mBq (F)

]
4−7> ·F

= 7

∫
33x

[
q (F) (mB4−7> ·F ) − 4−7> ·F (mBq (F))

]
.

It’s easy to get confused about what’s being asserted here. Note that the expression in square
brackets on the right refers to the four-vector F , even though the integral is only over the spatial
components x, so, after performing the integral, B is still a free variable on the right-hand side.
The assertion is that the result is actually a constant function of B , and that it’s equal to U† (>)
for all choices of B . And, as usual when both> ’s and p’s are around, the time component of> is
always assumed to be lp.

This formula will be our inspiration for a sort of cheap replacement creation operator in the
interacting theory. Just copying this expression unchanged will not work. There is no reason for
the right side of that expression to be time-independent anymore. More importantly, as we said
earlier, � (F) |Ω〉 is no longer just a one-particle state. Finally, in the free theory, this creation
operator creates a state whose wavefunction looks like a plane wave 4−7> ·F , which fills up all of
spacetime, whereas for our scattering problemwe are interested in keeping our particles far
apart from each other at times far away from B = 0.

This last problem, about localizing the particles, is relatively straightforward to solve. Sup-
pose we have a quantum field theory — either free or interacting — and a collection of one-
particle states |>〉 as abovewhich span the one-particle subspace. Given somearbitrary function
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� (p) of momentum, let’s define

5 (F) =
∫

33p
(2c)3 (2lp)

� (p)4−7> ·F

and
| 5 〉 =

∫
33p

(2c)3 (2lp)
� (p) |>〉,

where lp =
√
|p|2 + `2. Our assumptions imply that every one-particle state is of this form for

some � .
Inspired by how particle states work in ordinary quantummechanics, it is useful to think of

� as serving the role of themomentum-space wavefunction of the particle state. In particular, it
is straightforward to check that, for any 9 with 9 2 = `2, we have 〈9 | 5 〉 = � (k). This intuition
then also suggests that 5 serves the role of the position-space wavefunction of the state. (It
might be interesting to the reader check that 5 (F) is the Fourier transform of the function
X (>2 − `2)\ (>B )� (p). Here \ is the Heaviside function.)

When physicists describe this situation, they say that we’ve restricted our one-particle state
toawavepacketgivenby 5 . Note that 5 is a solutionof theKlein–Gordonequation (m2+`2) 5 = 0,
where ` is the mass of the particle. Given any 5 with this property, its inverse Fourier transform
will be supported on the hyperboloid>2 = `2, which has two connected components. It is not
hard to show that the 5 ’s that arise as wave packets in the way we’ve described here are precisely
the ones whose inverse Fourier transforms are supported just on the sheet of the hyperboloid
with positive time coordinate. Such functions 5 are called positive-energy solutions to the
Klein–Gordon equation.

I encourage the sufficiently bold reader to check that, in the free theory, if we write

U†
5 ,q
(B ) =

∫
33p

(2c)3 (2lp)
� (p)U† (>)

= 7

∫
33x [q (F) (mB 5 (F)) − 5 (F) (mBq (F))] ,

then U†
5 ,q
(B ) |Ω〉 = | 5 〉, again independently of B . (Note that this is just the second expression

above for U† with 5 (F) swapped in for 4−7> ·F .) This perhaps adds some physical credibility to the
ideal that our state should be thought of as localized to 5 : we are only “disturbing” the vacuum
at spacetime points where 5 or mB 5 is large.

It therefore perhaps makes sense to investigate how an operator defined like this behaves in
an interacting theory. So, if � is an interpolating field for our one-particle states of mass `, let’s
define

U†
5
(B ) = 7

∫
33x [� (F) (mB 5 (F)) − 5 (F) (mB� (F))] ,

and see what happens when we apply it to the vacuum.
The normalization assumptions wemade about � earlier imply that

〈Ω|U†
5
(B ) |Ω〉 = 0,

〈> |U†
5
(B ) |Ω〉 = / 1/2〈> | 5 〉,

and
〈Ω|U†

5
(B ) |>〉 = 0.

https://en.wikipedia.org/wiki/Heaviside_step_function
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(Work these out for yourself!) That is, at least as far as inner products with |Ω〉 and |>〉 are
concerned, U†

5
(B ) does create something proportional to | 5 〉 from the vacuum, even in the

interacting theory.
This is promising! But now suppose we have some state, say |k〉, which is orthogonal to the

vacuum and the one-particle subspace. We can split up |k〉 into eigenstates of % , writing

|k〉 =
∫

34> f (>) |k> 〉,

where f is some density function and each |k> 〉 is an eigenstate of % with eigenvalue > . Our
assumptions about the spectrum of % imply that we can assume f (>) = 0 unless >2 > 0 and
>2 ≠ `2. (In fact, since the eigenvalue `2 of % 2 was assumed to be isolated, we even know that
|>2 − `2 | is bounded away from zero.) If we write �> for the time/energy component of the
four-vector > and lp =

√
|p|2 + `2, then a more or less straightforward computation which I

encourage you to work out shows that

〈k |U†
5
(B ) |Ω〉 =

∫
34> f (>)

lp + �>
2lp

� (p)〈k> |� (0) |Ω〉4 7 (�>−lp)B .

Despite our desire for U†
5
(B ) |Ω〉 to be just equal to the one-particle state |>〉, this overlap

is under no obligation to be zero. But the exponential factor at the end of this expression can
get us something almost as good. On the support of f , |�> − lp | is bounded away from zero.
Thismeans that, for very large positive or negative B , the exponential factor 4 7 (�>−lp)B causes the
integrand to oscillate arbitrarily rapidly, whichmeans the integral gets arbitrarily small. (This is
essentially the content of the Riemann–Lebesgue lemma.)

So, even though we couldn’t make the overlap zero independently of B , we can conclude that

lim
B→±∞

〈k |U†
5
(B ) |Ω〉 = 0,

and a nearly identical computation will similarly show that

lim
B→±∞

〈Ω|U†
5
(B ) |k〉 = 0.

While U†
5
(B ) |Ω〉 isn’t quite equal to | 5 〉 independently of B , like we had in the free theory, this

behavior as B → ±∞will turn out to be enough.
Ifwe take complex conjugates of the equationswe’ve established so far, we get corresponding

facts about the “annihilation operator” U 5 (B ). Specifically,

〈Ω|U 5 (B ) |Ω〉 = 〈> |U 5 (B ) |Ω〉 = lim
B→±∞

〈k |U 5 (B ) |Ω〉 = 0,

and so, in the limit as B → ±∞, U 5 (B ) annihilates the vacuum as wemight expect.
Sowhere does this leave us in our hunt for a creation operator? We’ve taken the inner product

of U†
5
(B ) |Ω〉 with a collection of states that collectively form a basis for the Hilbert space, and

seen that with respect to those inner products it behaves just like / 1/2 | 5 〉 after the limit B → ±∞.
We can therefore conclude that if |k〉 is any state, then

lim
B→±∞

〈k |U†
5
(B ) |Ω〉 = / 1/2〈k | 5 〉.

In functional analysis language, this means that U†
5
(B ) |Ω〉 converges to / 1/2 | 5 〉 in the weak

topology.
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Analytic details aside, the facts we’ve gotten so far can be turned into a decentmental picture
of what happens when we apply U†

5
(B ) to the vacuum. We’re only “directly” messing with the

state at time B , and we’re doing this by applying a bunch of shifted copies of � and mB�. The
resulting state is orthogonal to the vacuum, and its projection onto the one-particle subspace is
always exactly / 1/2 | 5 〉 independently of B .

The state as a whole does depend on B , but in such a way that, if you focus on the overlap
with any particular multiparticle state, everything but / 1/2 | 5 〉 “washes away” after we wait for
a sufficiently long time. Focusing the overlap with a particular state is a bit like focusing your
attention on a bounded region of spacetime; saying the limit is just a weak limit rather than a
strong limit is like saying that the rate at which themultiparticle contributions fade away can
depend on which region you are looking at. (Because of the low level of rigor we’re operating
at in this discussion, we will now completely stop worrying about which topology our limits
converge in.)

4.3 In and Out States
Our ultimate goal is to build scattering states, that is, states that can serve as descriptions of
either the beginning or end of a scattering experiment. Such a state will almost always have
more thanoneparticle in it, and it is in fact for this reason thatwewent to all thework of building
a particle-creation operator rather than just working with the states | 5 〉 on their own.

The recipe is, in fact, not especially complicated given theworkwe’ve already done. Suppose
�1 and �2 are two different functions of momentumwith non-overlapping supports. We can
then build a “two-particle state” by setting

| 51, 52〉in = / −1/2 lim
B→−∞

U†
52
(B ) | 51〉.

We can similarly create states with any number of particles by doing the same thing recursively:

| 51, . . . , 5<−1, 5<〉in = / −1/2 lim
B→−∞

U†
5<
(B ) | 51, . . . , 5<−1〉in

as long as the supports inmomentum space of the �7 ’s are all disjoint.
In themore rigorous version of this story, it is possible to argue (at least insofar as anything

we’re doing here refers to any actual mathematical objects at all) that these limits exist and that
the result is independent of the order in which the operators are applied, but doing so involves
a long series of (in my opinion) unenlightening inequalities, and this article is certainly not the
place for it. We’ll have to content ourselves with an argument that it is physically plausible that
such a state should exist and that it is a suitable description of the beginning of a scattering
experiment.

The argument goes like this. If we look at the wave packets 51 and 52, the assumption that �1
and �2 have nonoverlapping support tells us that the regions where | 51 | and | 52 | are large should
bemoving away from zero in different directions as B goes to±∞. Thismeans that, for very large
negative B , the region of spacetime on which U†

52
(B ) is acting looks a lot like the vacuum, and

so it is plausible that it should affect that region inmuch the same way that it would affect the
vacuum, that is, it should produce something that looks locally like the one-particle state | 52〉.

(When working from theWightman axioms, this fuzzy physical intuition about states “look-
ing locally like the vacuum” can be formalized in terms of a clustering principle. Schematically,
if �1 is an operator defined in terms of an integral of field operators evaluated in some region
�1 in spacetime, and similarly for �2 and�2, then a clustering principle is a result that says
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that | |〈Ω|�1�2 |Ω〉 − 〈Ω|�1 |Ω〉〈Ω|�2 |Ω〉| | decays exponentially as�1 and�2 get further apart in a
spacelike direction. If you’re interested in learning about this in detail, I recommend the books
by Araki and Duncanmentioned in the introduction. Araki’s book in Section 5.4 also discusses
a precise sense in which the states we’re constructing here “look like” several particles moving
with constant velocity as B → −∞.)

Now, as we look at different time slices of the resulting state away from B , this resemblance
to | 52〉 should hold up as long as 51 and 52 still have very little overlap on that time slice. This
is perfectly fine if we move further into the past, which will make the particles move even
further away from each other, but not if wemove toward the future, where the particles have
the potential tomove close to each other. Once this happens, and for all times thereafter, we are
no longer justified in assuming that our state looks like | 52〉.

Our picture of the state | 51, 52〉in should therefore be that it describes a situation in which
two particles, with wave packets 51 and 52, start out separated from each other in the distant
past, potentially collide with each other somewhere around B = 0, resulting in who knows what
after much more time has passed. This is the meaning of the label “in” on the state: we are
specifying which particles come in to the scattering experiment, not which ones come out.

These are, unsurprisingly, called in states. We could instead have taken all the limits in
this discussion to be limits as B goes to positive∞. Then everything would be the same, except
that we would be specifying which particles come out at the end of the experiment. The states
built in this way are called out states and denoted | 51, . . . , 5<〉out. Note that if there is only one
particle, then — since we are assuming our particle is stable — there is no potential for any
interaction, and therefore no need to distinguish between in and out states. That is, we have
| 5 〉in = | 5 〉out = | 5 〉. (This is the reason we included the factor of / −1/2 to cancel the / 1/2 we
would get from looking at U†

5
(B ) |Ω〉.)

Now, consider a Fock spaceH in, of the type we constructed in the last article, for particles of
mass `. (Note that this is themass of the particle, not the “mass” parameter appearing in the
Lagrangian!) To each in state | 51, . . . , 5<〉in, we can associate a corresponding vector inH in by
taking | 51, . . . , 5<〉 = U†51 · · · U

†
5<
|Ω〉, where U†

57
now refers to the (time-independent) Fock space

creation operator.
In the rigorous version of this construction, one now shows that the in states have the same

inner product structure as the corresponding states inH in. This means that the construction
outlined in this section gives an injective, inner-product-preserving linear mapΩ− : H in →H .
In a similar way, we get another such map Ω+ : Hout → H . (One might object that we’ve
only defined thesemaps in the cases where the states are built out of wave packets that don’t
overlap inmomentum space, but such states are actually dense in the Fock space, so this is not
a problem.) The spacesH in andHout are collectively called the asymptotic Fock spaces of the
theory. The operator we’ve been calling U†

5
(B ) should then be thought of as approaching / 1/2

times the creation operator onH in as B → −∞, and similarly forHout and the B →∞ limit.
It is common to assume that these maps fromH in andHout toH are also surjective, that is,

that every state evolves into a superposition of in or out states if we run time to±∞. This property
is called asymptotic completeness, and it is the main reason that it makes sense to refer to the
states inH that are orthogonal to the vacuum and one-particle states as “multi-particle states.”

The assumption of asymptotic completeness becomesmore physically plausible when we
remember the rather expansive definition of “particle” we adopted earlier— any stable state
corresponding to an isolated eigenvalue of % 2 counts, whether or not it’s interpolated by one of
the “elementary” fields appearing in the Lagrangian. We will follow the physicists in adopting
this assumption going forward.
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4.4 Proving the LSZ Formula
Scattering experiments involve taking some number of particles, allowing them to collide with
each other, and computing the probability amplitude for this to result in some other collection
of particles after the collision has ended. In the languagewe’ve just finished developing, this can
be expressed as the overlap between an in state and an out state, that is, a quantity of the form

out〈61, . . . , 6; | 51, . . . , 5<〉in.

These are called scattering amplitudes, and they are what we are aiming to compute.
Scattering amplitudes can alternatively be described using the asymptotic Fock spaces

H in andHout. Under the assumption of asymptotic completeness, we get a unitary map ( =

(Ω+)−1Ω− : H in →Hout. Physicists call this map the S-matrix, and you can think of scattering
amplitudes as being like matrix entries of it.

The LSZ formula expresses scattering amplitudes in terms of a quantity which we’ll call the
time-ordered <-point function of our field operator �. Given points F1, . . . , F< in spacetime,
we define

�
(<)
�
(F1, . . . , F<) = 〈Ω|) [� (F1) · · · � (F<)] |Ω〉.

The ) in front of the product is called a time-ordering symbol; it means to order all of the
factors appearing in the product by their B coordinates, with earlier times appearing on the
right and later times on the left. (This may seem like it breaks Lorentz-invariance, but actually it
doesn’t, because � (F) commutes with � (G ) whenever F and G are spacelike separated!)

The LSZ formula then states that the scattering amplitude out〈61, . . . , 6; | 51, . . . , 5<〉in is equal
to

7<+;

/ (<+;)/2

∫
34F1 · · ·34F<+;

<∏
7=1

57 (F7 )
;∏
8=1

6 8 (F<+8 )
<+;∏
9=1
(m2F9 + `

2)� (<+;)
�

(F1, . . . , F<+;).

Wewill eventually be able to get this into a somewhat more readable form, which will enable us
to get a better sense of what it means, but unfortunately this is the form in which it’s easiest to
prove, so we’re stuck with it for themoment.

Our argument will be inductive. Specifically, we’ll show that, for any points F1, . . . , F9 and
any wave packets 51, . . . , 5< , 61, . . . , 6; satisfying our assumption about not overlapping inmo-
mentum space, we have
out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )] | 51, 52, . . . , 5<〉in

=
7

/ 1/2

∫
34F 51 (F) (m2F + `2) out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )� (F)] | 52, . . . , 5<〉in

=
7

/ 1/2

∫
34F 61 (F) (m2F + `2) out〈62, . . . , 6; |) [� (F1) · · · � (F9 )� (F)] | 51, 52, . . . , 5<〉in.

By applying this repeatedly, using the first equality for each incoming particle and the second
for each outgoing particle, we’ll get our result.

We’ll only do the first equality, since the second one is very similar. We can write the left side
of the equation as

/ −1/2 lim
B→−∞

out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )]U†51 (B ) | 52, . . . , 5<〉
in.



Section 4 Scattering and the LSZ Formula 18

To save on space, we’ll need to introduce a bit of physicists’ notation. For any two functions>
and ? , define>

↔
mB? = > (mB?) − ? (mB>). Then the result of plugging the definition of U†51 into this

expression can be written
7

/ 1/2 lim
B→−∞

∫
33x 51 (F)

↔
mB

out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )]� (F) | 52, . . . , 5<〉in.

Now, because the B coordinate of F is going to −∞, the � (F) factor is actually already in
the position it would be placed in by the time-ordering. We can therefore pull it into the time-
ordered product without changing anything:

7

/ 1/2 lim
B→−∞

∫
33x 51 (F)

↔
mB

out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )� (F)] | 52, . . . , 5<〉in.

The purpose of this seemingly irrelevant move is that it enables our next trick. First, note that if
we were to replace this new version of the limit by one in which B goes to positive∞, then the
time ordering would place the � (F) on the left, giving

7

/ 1/2 lim
B→∞

∫
33x 51 (F)

↔
mB

out〈61, 62, . . . , 6; |� (F)) [� (F1) · · · � (F9 )] | 52, . . . , 5<〉in

= / −1/2 lim
B→∞

out〈61, 62, . . . , 6; |U†51 (B )) [� (F1) · · · � (F9 )] | 52, . . . , 5<〉
in.

Now, thebraexpression out〈61, 62, . . . , 6; |U†51 (B ) is thedualof theketU 51 (B ) |61, 62, . . . , 6;〉
out,

and in the limit B →∞, U 51 (B ) becomes an “out” annihilation operator. So, because we assumed
that 51 has no overlap with the 6 8 ’s inmomentum space, this whole expression is zero. (If this
fact about Fock space annihilation operators isn’t clear, it’s worth convincing yourself of it now.)

This means, in our original limit with B → −∞, we are free to subtract the limit with B →∞
without affecting the result, giving us
7

/ 1/2

[
lim
B→−∞

− lim
B→∞

] ∫
33x 51 (F)

↔
mB

out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )� (F)] | 52, . . . , 5<〉in

=
7

/ 1/2

∫ ∞

−∞
3B mB

{∫
33x 51 (F)

↔
mB

out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )� (F)] | 52, . . . , 5<〉in
}
.

It is a nice exercise to show that this is equal to
7

/ 1/2

∫
34F 51 (F) (m2F + `2) out〈61, 62, . . . , 6; |) [� (F1) · · · � (F9 )� (F)] | 52, . . . , 5<〉in.

I encourage you to work this out yourself. The argument uses the fact that 51 is a solution of the
Klein–Gordon equation along with some integration by parts. (In the rigorous version of this
story, one can show that the boundary term in the integration by parts is zero; feel free to just
assume this.)

This is exactly the expression we were looking for, so this completes the proof.

4.5 Understanding the LSZ Formula
Let’s examine the formula that LSZ gives us for the scattering amplitude in a bit more detail. For
ease of reference, it was

7<+;

/ (<+;)/2

∫
34F1 · · ·34F<+;

<∏
7=1

57 (F7 )
;∏
8=1

6 8 (F<+8 )
<+;∏
9=1
(m2F9 + `

2)� (<+;)
�

(F1, . . . , F<+;).
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In the discussion that preceded the proof of the formula, we made a big deal out of the
fact that the particles were confined to these non-overlapping wave packets, so that we could
assume they were far apart from each other at times far away from B = 0. Despite this, it’s
common to state the LSZ formula in the limit where these wave packets approach plane waves,
replacing the 57 and 67 labels on the in and out states with momentum labels. If we do this,
replacing 57 (F) and 67 (F) with 4−7>7 ·F , we get
out〈><+1, . . . , ><+; |>1, . . . , ><〉in

=
7<+;

/ (<+;)/2

∫
34F1 · · ·34F<+; 4−7 (

∑<
7=1 >7 ·F7−

∑<+;
8=<+1 >8 ·F8 )

<+;∏
9=1
(m2F9 + `

2)� (<+;)
�

(F1, . . . , F<+;).

(If you find the violation of our non-overlapping wave packet assumption troubling, it might
be helpful either to think of this version of the formula as just indicating the thing you need to
integrate the wave packets against to get the “real” formula, or to think of it as an approximation
to what happens if our original functions of momentum are very sharply peaked around a
particular value.)

This allows for a nicer way to think about what the LSZ formula is saying. Let’s define the
momentum-space time-ordered <-point function to be the Fourier transform of� (<)

�
, that is,

�̃
(<)
�
(>1, . . . , ><) =

∫
34F1 · · ·34F< 4−7

∑<
7=1 >7 ·F7� (<)

�
(F1, . . . , F<).

Then, pleasingly, the Fourier transform turns each derivative operator in the LSZ formulas into
7 times amultiplication by> . So we get

out〈><+1, . . . , ><+; |>1, . . . , ><〉in

=
(−7 )<+;

/ (<+;)/2

<+;∏
9=1
(>29 − `

2)�̃ (<+;)
�

(>1, . . . , >< ,−><+1, . . . ,−><+;).

This version of the formula, in my opinion, makes it quite a bit easier to see what’s going on.
Note first that �̃ (<+;)

�
is defined on the entirety of (R4)<+; , that is, for any choice of> ’s. Despite

this, we are only ever evaluating this expression “on themass shell,” that is, when each>2
9
= `2.

This, of course, means that the factor (>2
9
−`2) appearing in our formula is zero! Since the result

is supposed to be finite and nonzero, we conclude that �̃ (<+;)
�

must have a simple pole at 0 in
the variables (>2

9
− `2); the residue at that pole is the scattering amplitude we’re interested in.

The behavior of �̃ (<+;)
�

on the rest of its domain is irrelevant to the scattering amplitude.
The fact that the (< +;)-point function carries muchmore information than the scattering

amplitude perhaps makes more sense when we remember that it depends on our choice of
interpolating field �, and this choice is far from unique. In fact, different choices of � can
absolutely change the behavior of �̃ (<+;)

�
off themass shell, but the LSZ formula implies that

the behavior at the on-mass-shell pole will always be the same.
Finally, it’s worth emphasizing once again that the benefit of having done all this work is that

the <-point functions are actually computable, at least approximately, and so the LSZ formula
provides the bridge between the quantities we care about and the computations we are able to
perform. It is in the computation of the <-point functions that the famous Feynman diagrams
show up. We’ll take up that part of the story in the next article in this series.
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