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The Riemann Zeta Function and the
Distribution of Primes

Nic Ford

1 Introduction
The Riemann Hypothesis, first posed in 1859, is one of themost famous unsolved problems
inmathematics. It’s usually stated as a conjecture about the Riemann zeta function, which is
defined as the series

Z (A ) =
∞∑
<=1

<−A

whenRe(A ) > 1, andwhich canbe extended to all ofC by analytic continuation. (We’re following
the somewhat strange convention, universal in analytic number theory, of referring to the
argument in a function like this as A .) The conjecture is that the only zeroes of Z for 0 ≤ Re(A ) ≤ 1
are at points where Re(A ) = 1

2 .
When it’s stated this way, it’s pretty difficult to see why it would be anything more than a

curiosity— it might be somewhat surprising that it’s so hard to control the zeroes of a function
with such a simple definition, but that would be about it. In fact, the reason Riemann proposed
the RiemannHypothesis comes from a deep connection between the Riemann zeta function
and the distribution of prime numbers.

Specifically, the Prime Number Theorem, which was first proved in 1898, states that if we
define c (F) to be the number of primes ≤ F , then

c (F) ∼ F

log F .

(The notation ∼ here refers to asymptotic equality; we say 5 (F) ∼ 6 (F) if limF→∞ 5 (F)/6 (F) =
1.) Though it’s far from obvious looking at the statement, the proof of the Prime Number
Theorem is intimately connected to the zeroes of the Riemann zeta function, and, if it could be
established, the Riemann Hypothesis would give us much greater control over the error in a
closely related estimate for c (F) than we are able to prove without it.

The purpose of this article is to explain how these connections come about. The intended
reader has been exposed to some complex analysis—ourmain toolwill be theResidue Theorem
—butmight not know anything about the RiemannHypothesis or how it’s connected to number
theory.

This is, in my opinion, a story whose broad strokes are very beautiful, but which gets quite
technical if one wants to prove everything completely. We will therefore be skipping a lot of
proofs. If you’re interested in going deeper, you can learnmuchmore from analytic number
theory textbooks. In preparing this article, I was greatly helped by:



Section 2 Dirichlet Series 2

• MultiplicativeNumberTheory I.ClassicalTheory byHughMontgomeryandRobertVaughan,

• Multiplicative Number Theory by Harold Davenport, and

• Complex Analysis by Elias Stein and Rami Shakarchi.

I’m grateful to Hunter Brooks, Paul Dancstep, Jake Levinson, and Julian Rosen for helpful
comments on earlier drafts of this article, and to Vivian Kuperberg for many enlightening
conversations on this topic.

2 Dirichlet Series
The above expression for the Riemann zeta function has the form of aDirichlet series, that is, a
series of the form

5 (A ) =
∞∑
<=1

0<<
−A .

Our investigation of the relationship between the zeta function and the distribution of primes
will benefit from a quick overview of the theory of Dirichlet series in general.

First, we should say a bit about what the point of studying a Dirichlet series might be. You
may be familiar with the fact that it can be useful to study a sequence of numbers (2<) by
looking at its generating function, that is, by examining the power series∑∞<=0 2<H< . By manipu-
lating the generating function using the tools of complex analysis, it’s often possible to extract
combinatorial information about the coefficients of the power series of the resulting function.

One way to see why onemight prefer to study some sequences using Dirichlet series is to
examine what happens when you multiply two ordinary power series and compare it to the
corresponding result for Dirichlet series. We have that( ∞∑

<=0
2<H

<

) ( ∞∑
<=0

3<H
<

)
=

∞∑
<=0

( ∑
9+;=<

293;

)
H< ,

whereas ( ∞∑
<=1

0<<
−A

) ( ∞∑
<=1

1<<
−A

)
=

∞∑
<=1

( ∑
9;=<

091;

)
<−A .

Note that computing the coefficient of H< in the power series involves a sum over all 9 ,; with
9 +; = <, whereas for the coefficient of <−A in the Dirichlet series we look at 9 ,; with 9; = <.

This means that Dirichlet series are especially well-suited to the case where the coefficients
behave in an interesting way with respect tomultiplication rather than addition. One nice
example of this (which I encourage you to verify) is that the <’th coefficient of the Dirichlet
series for (Z (A ))2 is the number of divisors of <.

Where power series have a radius of convergence, Dirichlet series have an abscissa of con-
vergence, that is, there is a real number f2 such that the series converges at A if Re(A ) > f2 and
diverges if Re(A ) < f2 . (As with power series, it’s much harder to pin downwhat happens right
on the boundary.) Wemight have f2 = −∞, meaning that the series converges everywhere, or
f2 = ∞, meaning it converges nowhere.

This phenomenon is amanifestation of a general pattern which is useful to keep inmind
when dealing with Dirichlet series: much of the time, where you would use a circle or a disk to
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do something with a power series, you will use a vertical line or a right half plane to do the same
thing with a Dirichlet series.

This pattern appears again in the next fact that we’ll discuss. One very useful tool when
studying ordinary generating functions is the Cauchy Integral Formula, which lets you extract
each coefficient of power series by expressing it as an integral around a circle. Our next object
of discussion is an analogous result that lets you use an integral to extract coefficients from a
Dirichlet series.

The Cauchy Integral Formula is powered by the observation that the integral of (1/2c7 )H<
around the unit circle is 1 if < = −1 and 0 otherwise. Therefore, if we divide a power series by
H<+1 and perform this integral, we learn about the <’th coefficient.

We’d like to find an analogous way to use an integral to extract coefficients from a Dirichlet
series, and in order to do this we’ll need something to play the role of the fact about the integral
of H< around the unit circle. The fact in question is that

1
2c7 lim

)→∞

∫ 2+7)

2−7)

G A

A
3A =


1, G > 1
1
2 , G = 1
0, 0 < G < 1

for 2 , G > 0. (Note that, in keeping with our pattern, we’re now looking at an integral along a
vertical line rather than a circle.)

Proving this is a bit more involved than proving the fact about H< , so I will offer you just a
sketch of the argument and encourage you to fill it in yourself. Suppose first that G > 1. We’ll
apply the Residue Theorem to the integral of G A/A around a large rectangle whose right edge is
the vertical line from 2 − 7) to 2 + 7) . (Note that this encloses the pole at A = 0, whose residue is
1.) Because G > 1, G A gets smaller as A gets more negative, and with sufficient care about how
the width of the rectangle grows in relation to) , you can use this tomake the integrals along
the top, bottom, and left sides of the rectangle go to zero as) goes to∞, leaving only the piece
we care about.

When 0 < G < 1, we canmake a similar argument, except now G A gets small as A increases,
whichmeans we should extend the rectangle to the right, where it doesn’t enclose any poles of
G A/A . When G = 1, you can compute the integral directly.

This gives us a nice way to pick out terms from aDirichlet series. Suppose F > 0. If 5 (A ) =∑∞
<=1 0<<

−A , then we should expect

1
2c7 lim

)→∞

∫ 2+7)

2−7)
5 (A ) F

A

A
3A =

1
2c7 lim

)→∞

∫ 2+7)

2−7)

∞∑
<=1

0<
(F/<)A
A

3A

=
1
2c7

∞∑
<=1

0< lim
)→∞

∫ 2+7)

2−7)

(F/<)A
A

3A

=
∑
<≤F

′
0< ,

where the number theorists’ notation∑′ indicates that, if F is an integer, then we should count
the term where < = F with a coefficient of 12 . This result is called Perron’s Formula, and it is
valid as long as everything converges fast enough to enable the exchange of the integral and
summation on the second line. This turns out to work as long as 2 > max(0, f2 ).
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3 A Target for Perron’s Formula

3.1 The FunctionsΛ andk0
With Perron’s Formula in hand, we would like a function we can apply it to from which we
might extract information about the distribution of the primes. Ideally, we’d arrange for the
sum appearing on the right side of Perron’s Formula to be equal to the prime-counting function
c (F). That way, we would have an expression for c (F) in terms of an integral, and we could
perhaps then use the tools of complex analysis to estimate that integral.

We will in fact do something quite similar to this, but it turns out to bemuch easier to target
a function which is similar to, but a bit different from, c (F) itself. We’ll therefore take a bit of
time to introduce this function and discuss how it relates to c (F) before we come back to the
question of how to connect it to Perron’s Formula.

We’ll define

Λ(<) =
{
log> < is a power of> for some prime>
0 otherwise.

ThisΛ(<) is called the vonMangoldt function. We’ll then define the Chebyshev psi function
as

k0 (F) =
∑
<≤F

′
Λ(<)

for F > 0, where ∑′ is as in the previous section. This function k0 (F) will be our substitute
for c (F). Our plan will be somewhat indirect: we’ll use Perron’s formula to get quantitative
information about k0 (F), from which it will be possible to prove some corresponding facts
about c (F).

It’s useful to see how this second step might work, so we’ll go through one example now.
Specifically, suppose we knew thatk0 (F) ∼ F ; we will show that then c (F) ∼ F/log F , which was
our statement of the Prime Number Theorem in the introduction. (This argument won’t be
used going forward, so you should feel free to skip it if you’d like.)

First, note that (assuming F is not an integer for simplicity)

k0 (F) =
∑
>≤F

⌊ log F
log>

⌋
log>,

since there are blog F/log>c powers of each prime> less than F and each one contributes log>
to the sum. But this is

≤
∑
>≤F

log F
log> log> = c (F) log F,

and so, for all F , we have that k0 (F)
F
≤ c (F)

F/log F . This gives us that lim infF→∞ c (F)
F/log F ≥ 1.

For the other inequality, fix 0 < U < 1. We then have (still assuming F is not an integer)

k0 (F) ≥
∑
>≤F

log> ≥
∑

FU<>≤F
log> ≥ (c (F) − c (FU)) log(FU),

whichmeans that
k0 (F) + Uc (FU) log F ≥ Uc (F) log F,
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which implies that
k0 (F)
F
+ Uc (F

U) log F
F

≥ U c (F)
F/log F .

Sincec (FU) < FU , wecanbound the second termon the left fromabovebyUFU−1 log F , which
goes to 0 as F →∞. Since U can be arbitrarily close to 1, this gives us that lim supF→∞ c (F)

F/log F ≤ 1,
which was the rest of what we needed.

3.2 Perron’s Formula andk0
Our next task is to find some way fork0 (F) to pop out of Perron’s Formula. This will happen if
we can find some function 5 (A ) whose Dirichlet series is

5 (A ) =
∞∑
<=1

Λ(<)<−A .

With that inmind, let’s suppose we had such a function 5 and see if we can turn its Dirichlet
series into something recognizable.

First, note that

5 (A ) =
∞∑
;=1

Λ(<)<−A =
∑

> prime

∞∑
;=1
(log>)>−;A .

The term (log>)>−;A is the derivative of −>−;A/;, so if we define

� (A ) =
∑

> prime

∞∑
;=1

>−;A

;
,

then � ′(A ) = −5 (A ). Now, recall that the power series for log(1 − F) is −∑∞
;=1 F

;/;. We can
therefore write

� (A ) = −
∑

> prime
log(1 − >−A ) = log ©«

∏
> prime

1
1 − >−A

ª®¬ .
The expression inside the logarithm here is the famous Euler Product formula for the Rie-

mann zeta function: if Re(A ) > 1, then

Z (A ) =
∏

> prime

1
1 − >−A .

Proving that this infinite product converges in the required range is a bit delicate, but it’s not
hard to see informally why it ought to be equal to the sum defining Z . Using the usual power
series for 1/(1 − H), we see that∏

> prime

1
1 − >−A =

∏
> prime

(
1 + >−A + (>2)−A + · · ·

)
.

If we imaginemultiplying out this product, each term of the result will contain, for each prime, a
factor of the form (>;)−A for some;. Every positive integer <’s prime factorization will appear
exactly once in this way, and the corresponding termwill be equal to <−A , exactly what appears
in the series defining Z .
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Pulling this all together, we conclude that � (A ) = log Z (A ), and therefore 5 (A ) = −� ′(A ) =
−Z ′(A )/Z (A ). In other words,Λ(<) is the <’th Dirichlet coefficient for the function −Z ′(A )/Z (A ).
Applying Perron’s formula to this function then tells us that

k0 (F) =
1
2c7 lim

)→∞

∫ 2+7)

2−7)

(
− Z
′(A )
Z (A )

)
F A

A
3A

whenever 2 is greater than both 0 and the abscissa of convergence of theDirichlet series for Z ′/Z ,
which turns out to be 1. This integral will be our window into the distribution of the primes.

4 Evaluating the Integral
We’ll now take on the task of seeing what we can learn about this integral. From here on, we’re
going to have to state a lot of things without proof.

Our main tool will once again be the Residue Theorem. Note first that F A/A gets small
when Re(A ) and |A | are small. This suggests that, if we complete our vertical line contour into
a large rectangle extending to the left, then (assuming we can control the growth of Z ′/Z ) the
contribution of the other three sides of the rectangle ought to go to zero.

This does in fact work. With this result in hand, we can conclude thatk0 (F) should be equal
to the sum of the residues of the integrand

(
− Z

′ (A )
Z (A )

)
FA

A
at all of its poles with real part ≤ 1. So we

now turn to an examination of those poles.
We’ll first need some facts about Z . OurDirichlet series defining Z converges only for Re(A ) >

1. It is possible, though, to analytically continue Z to ameromorphic function on all ofC, and
we follow the usual practice in complex analysis of referring to this analytic continuation as Z
even when it is no longer equal to the original series.

The resulting function Z has exactly one pole. It’s at A = 1, it’s simple, and its residue is 1. The
zeta function has no zeroes or poles for Re(A ) > 1; this in fact follows from the Dirichlet series
representation.

It is somewhat tedious but essentially elementary to show that Z satisfies the following
functional equation:

Z (A ) = c A− 1
2
Γ((1 − A )/2)

Γ(A/2) Z (1 − A ).

(Here c is the familiar mathematical constant, not the prime-counting function, and Γ is the
gamma function.) This gives us a way to control the zeroes of Z (A ) for Re(A ) < 0. Such a zero
can come from...

• ...zeroes of Γ((1 − A )/2). There are none of these; Γ in fact has no zeroes at all.

• ...zeroes of Z (1 − A ). If Re(A ) < 0, then Re(1 − A ) > 1, and we just said Z has no zeroes in
this region.

• ...poles of Γ(A/2). Here we do get some: Γ has poles at every negative integer, which gives
Z a zero at every negative even integer.

The zeroes at the negative even integers are called the trivial zeroes of Z . The region 0 ≤
Re(A ) ≤ 1 is called the critical strip, and what we’ve just shown is that it’s the only part of the
complex plane in which nontrivial zeroes of Z can live.

https://en.wikipedia.org/wiki/Gamma_function
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Let’s use this information to examine the residues of our integrand
(
− Z

′ (A )
Z (A )

)
FA

A
. Recall that,

for anymeromorphic function 5 , the logarithmic derivative 5 ′/5 has a simple pole at any point
where 5 has a zero or a pole, and the residue is equal to themultiplicity of 5 at that point. We
therefore see that our integrand has poles at:

• A = 0 from the 1/A . The residue is −Z ′(0)/Z (0), which turns out to be − log(2c).

• A = 1 from the pole of Z there. The residue is F .

• A = −2<, for any positive integer <, from the trivial zeroes of Z . These contribute a total of
−∑∞

<=1
F2<
2< = − 12 log(1 − F−2).

• A = d , where d is any nontrivial zero of Z . The residue of each of these is −F d/d times the
multiplicity of the zero.

Putting all of this information together, we conclude that

k0 (F) = F −
∑
d

F d

d
− log(2c) − 1

2 log(1 − F
−2),

where d ranges over all nontrivial zeroes of Z and we count themwithmultiplicity.

5 Estimates of the Distribution of Primes
This already gives us a very tight relationship between the distribution of primes— as captured
by the growth ofk0 (F)—and the locations of the nontrivial zeroes of the Riemann zeta function.
The game one plays from here is to try to find regions of the critical strip without any zeroes
(unsurprisingly called zero-free regions), and to try to control the number of zeroes in a given
region of the critical strip as a function of the region’s size.

We won’t pursue this project now, since it gets very technical very quickly. We’ll restrict
ourselves in this final section to a quick survey of the sorts of estimates that can be extracted
from results of this type.

First, it is possible to get enough control over the zeroes of Z to show that∑d F
d/d = = (F),

and this is in turn enough to establish thatk0 (F) ∼ F , whichwe earlier argued implies the Prime
Number Theorem. More precisely, the arguments for accomplishing this that appear in most of
the textbooks on this subject end up showing that

k0 (F) = F +$ (F exp[−2 (log F)
1
2 ])

for some constant 2 > 0.
What does this mean for the prime-counting function c (F) itself, which after all is a much

more interesting object thank0 (F)? To state this, we have to confront a small lie I’ve been telling
about the PrimeNumber Theoremup to now. While it is true thatc (F) ∼ F/log F , this is actually
not a very good estimate forc (F). In this form, the estimate of the error ends up taking the form

c (F) = F

log F +$
(

F

(log F)2
)
,

and one can show that this is in a sense best possible.
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One can get much closer by instead estimating c (F) in terms of the function

li(F) =
∫ F

2

1
log B 3B ,

which is also asymptotically equal to F/log F but comesmuch closer to being a good estimate
for c (F). It is possible to turn the above estimate fork0 (F) into a very similar-looking estimate
for c (F):

c (F) = li(F) +$ (F exp[−2 (log F) 12 ]).
While better than F/(log F)2, this is still not a great error term; for example, it’s still asymp-

totically larger than F1−n for every positive n. This is perhaps not surprising if you take another
look at the formula we found fork0 (F) above. Any zero d of Z will make a contribution to that
sumwhose size is on the order of FRe(d) . This strongly suggests that we won’t be able to improve
our estimate bymuch unless we can get all the zeroes of Z to have small real part.

And in fact, it is possible to make this intuition precise: it can be shown that, if every zero of
Z in the critical strip has real part ≤ f , then

k0 (F) = F +$ (Ff (log F)2)

and
c (F) = li(F) +$ (Ff log F).

This is much better — for example, the error is smaller than Ff+n for any n. The Riemann
Hypothesis would of course produce this result with f = 1

2 , and because we know that there are
plenty of zeroes of Z on this line, it’s not possible tomake f any smaller than this.

This is the main reason Riemann proposed the Riemann Hypothesis — it would give us
much better control over the growth of c (F) than we are able to prove otherwise. (One nice way
to interpret the claim is that it means that the first half of the digits of the <’th prime should
be expected to line up with those of li−1 (<).) In the years since 1859, an astoundingly large
number of other consequences of the RiemannHypothesis have been discovered both inside
and outside number theory. To give just a couple number-theoretic examples of a similar flavor
to what we’ve already discussed:

• The RiemannHypothesis implies that, for any prime> , the distance from> to the next
prime is$ (> 1

2 log>).

• The sigma function f (<) is defined to be the sum of all the divisors of <. The Riemann
Hypothesis implies that f (<) < 4W< log log< for all sufficiently large <. (Here W is the
Euler–Mascheroni constant.)

• The Euler totient function q (<) is defined to be the number of positive integers ≤ <

which are relatively prime to <. The RiemannHypothesis is equivalent to the claim that,
if#9 is the product of the first 9 primes, then#9/q (#9 ) > 4W log log#9 .

• A somewhat goofier one involves the Redheffermatrix � (<), which is defined to be the
< × < matrix whose (7 , 8 ) entry is 1 if either 8 = 1 or 7 divides 8 , and 0 otherwise. The
RiemannHypothesis is equivalent to the claim that det(� (<)) =$ (< 1

2+n) for every n > 0.

The list of interesting consequences is much larger for the so-calledGeneralized Riemann
Hypothesis, which is the conjecture that a class of meromorphic functions called Dirichlet !-
functions (of which Z is one example) also have all their nontrivial zeroes on the line Re(A ) = 1

2 .

https://en.wikipedia.org/wiki/Euler%27s_constant
https://en.wikipedia.org/wiki/Dirichlet_L-function
https://en.wikipedia.org/wiki/Dirichlet_L-function
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There are two discussions (links here and here) on the websiteMathOverflow that are a good
source for more information about interesting consequences of the RiemannHypothesis and
its generalizations.

My hope is that this article has made the connection between the zeta function and the
primes feel less mysterious, but, speaking personally, I don’t think it will ever stop feeling
remarkable — it’s quite surprising that it’s possible to use information about the zeroes of a
meromorphic function like Z to answer questions about primes and divisibility of integers. This
connection is, in a sense, the driving force behindmuch of modern analytic number theory,
and there is muchmore to learn if you’re interested in going further.

https://mathoverflow.net/questions/17209/consequences-of-the-riemann-hypothesis
https://mathoverflow.net/questions/39944/collection-of-equivalent-forms-of-riemann-hypothesis
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