
1

Introduction and Resources
Exercises marked with a star are especially challenging. Whether or not an exercise has a star on it,
you should always feel free to ask for help. I have intentionally written more exercises than I think
you will finish during class time, so feel free to jump around a lot if you get stuck and/or bored. If
you manage to finish everything, tell me and I’ll come up with something for you to do.

The nature of this class is such that you will have to spend some time doing Internet research
and learning topics on your own. The following are good resources to get you started:

• HaskellWiki (http://www.haskell.org/haskellwiki/Haskell). A large, community-maintained
Wiki devoted to the Haskell programming language. A good first place to look for informa-
tion on a specific topic.

• Hoogle (http://www.haskell.org/hoogle/). A search engine for the Haskell standard li-
braries. You can look for any Haskell function either by name or by type. Searching by type
is very useful if you find yourself asking the question “Is there a built-in function that does
this?”

• Learn You a Haskell for Great Good! (http://learnyouahaskell.com/). This is a book, also
available online, that aims to be a beginner’s guide to Haskell. It covers the topics it covers
pretty thoroughly, and it’s written in a goofy, easy-going tone. I also have a paper copy of
this book if you want to look at it.

• Real World Haskell (http://book.realworldhaskell.org/). This book aims to teach the
reader how to use Haskell for practical tasks. The online version also lets you see comments
from readers.

• HaskellWiki’s list of tutorials (http://www.haskell.org/haskellwiki/Tutorials) mentions
the above two books and also has links to several more.

• The Haskell Cheatsheet (http://cheatsheet.codeslower.com/). This is meant to be a
“quick reference” for Haskell syntax and context. Good if you remember the general idea of
something but have forgotten exactly how you’re supposed to type it.

• The Typeclassopedia (http://www.haskell.org/haskellwiki/Typeclassopedia). This is a
good document to read after you’re comfortable with most of the material covered in this
problem set. It’s a quick but thorough rundown of some of the most important typeclasses
in Haskell.

• A Gentle Introduction to Haskell (http://www.haskell.org/tutorial/). Despite the title,
this tutorial is not at all gentle and is aimed at people who already know a functional
programming language. It might be more useful as a resource than as something to learn
from.

• The GHC documentation (http://www.haskell.org/ghc/docs/latest/html/). Very com-
plete, but far from a tutorial. Good if you already know what you’re looking for.

• The Haskell 98 Language Report (http://www.haskell.org/onlinereport/). The complete
specification of the Haskell programming language.

http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/hoogle/
http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://www.haskell.org/haskellwiki/Tutorials
http://cheatsheet.codeslower.com/
http://www.haskell.org/haskellwiki/Typeclassopedia
http://www.haskell.org/tutorial/
http://www.haskell.org/ghc/docs/latest/html/
http://www.haskell.org/onlinereport/

Section 1 Problems That Don’t Involve Monads 2

1 Problems That Don’t Involve Monads
1. Look up how list comprehensions and ranges work in Haskell. Use them to write a function

that takes a number n to the list of all pairs of numbers between 1 and n whose sum is a
multiple of 4.

2. Use a fold to write the factorial function in one line in a way that doesn’t have any explicit
recursion. (That is, your function shouldn’t call itself, but the fold function you’ll use is of
course itself recursive.)

3. (a) Write the list of all powers of 3.

(b) Write the list of all lists consisting of only 1’s and 2’s, ordered by length.

(c) Write the list of all prime numbers.

4. (a) Write a function that sorts a list using quick sort. (Hint: Use the partition function.)

(b) Write a function that sorts a list using merge sort.

5. (a) Write a function called subsets that takes a list and returns a list of all ordered sublists
of it.

subsets [1,2] == [[],[1],[2],[1,2]]subsets "boo" == ["","b","o","bo","o","bo","oo","boo"]subsets [0,6,2] == [[],[0],[6],[0,6],[2],[0,2],[6,2],[0,6,2]] �
The order of the output doesn’t have to match the order in these examples. (This is in
Data.List as subsequences.)

(b) Write a function called choose that takes a list and a number and returns all sublists of
the list of that length.

choose 3 [1..4] == [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]choose 1 "hey" == ["h","e","y"]choose 2 [66,77] == [[66,77]]choose 0 "I am the very model of a modern major-general." == [""] �
(c) If you didn’t already, write a version of choose so that choose k runs in polynomial

time once you’ve chosen a value of k. (In particular, it shouldn’t look at the entire
output of subsets.)

6. Consider the following function definition:

f 0 = 1f 1 = 1f n = f (n - 1) + f (n - 2) �
(a) What does f compute?

(b) How many time will f be called to compute (f 5)? What about (f n) for any n?

(c) Write a version of f that uses a list to internally keep track of the values it computes.
Make sure it can compute (f 100) in a reasonable amount of time. (This technique is
called memoizing and is a good way to take advantage of Haskell’s laziness to minimize
repeated computations.)

Section 1 Problems That Don’t Involve Monads 3

7. Look up the contents of Data.List on the Internet, or just go to http://www.haskell.org/
ghc/docs/latest/html/libraries/base/Data-List.html if you can’t find it.

(a) Read the descriptions of the following functions and provide your own implementa-
tions.

i. reverse
ii. maximum

iii. (!!)
iv. intersperse
v. iterate

vi. unfoldr
vii. break

viii. partition
ix. nub

(b) (*) How many of these can be implemented using folds without any explicit recursion?

8. What are the types of the following expressions? (You can check your answers in GHCi after
you have a guess.)

(a) 7
(b) [[], []]
(c) [[], [[]]]
(d) \x y z -> x==7 || y==z
(e) ($0)
(f) flip filter [1,2,3]
(g) map (map (<))
(h) map ((map (*)).)

9. Consider the function fix from Data.Function, defined like this:

fix :: (a -> a) -> afix f = f (fix f) �
(a) What is fix (0:)?

(b) What is fix ((1:) . map (1+))?

(c) Construct a function f for which fix f can be fully evaluated in finite time.

(d) (*) Convince yourself that any recursive definition can be rewritten using fix without
any other explicit recursion. Write the factorial function as fix f for some function f
that has no recursion at all.

10. (a) Create a datatype for representing binary trees. Every node should either branch into
two subtrees (the left and right subtrees) or be a leaf. Each node, whether it branches
or not, should have a value attached to it, the type of which is arbitrary but the same
throughout the binary tree.

(b) Write a function that...

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-List.html

Section 1 Problems That Don’t Involve Monads 4

i. ...outputs the contents of the binary tree as a list. Write three versions: one for
preorder, one for inorder, and one for postorder. (Look these up if you don’t know
them.)

ii. ...outputs the maximum element of a binary tree.

iii. ...adds all the elements of a binary tree.

iv. ...determines whether a binary tree is symmetric, that is, whether flipping the left
side about the middle produces the right side.

v. ...takes a tree and an integer n and outputs a list of all the nodes at the n’th level
from the top.

vi. ...outputs the depth of a tree, that is, how far down the deepest node is.

(c) Make your binary tree type an instance of the Eq typeclass.

(d) Write a type signature for each function in 10b. Try to make each one as general as
possible.

(e) (*) Write a version of foldr for binary trees. How many functions from 10b can you
implement in terms of your function?

11. This is the definition of the Monoid typeclass, defined in Data.Monoid:

class Monoid m wheremempty :: mmappend :: m -> m -> mmconcat :: [m] -> mmconcat = foldr mappend mempty �
It is meant to represent values that can be combined with some binary operation and which
have an “identity” with respect to that operation. For example, you could define an instance
of Monoid for integers like this:

instance Monoid Integer wheremempty = 0mappend = (+) �
This isn’t actually the definition that appears in Data.Monoid. There are two instances of
Monoid for numeric types, depending on whether we want the operation in question to be
addition or multiplication (look up how newtype works if you’re not familiar with it):

newtype Sum a = Sum { getSum :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) wheremempty = Sum 0Sum x `mappend` Sum y = Sum (x + y)

newtype Product a = Product { getProduct :: a }
deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) wheremempty = Product 1Product x `mappend` Product y = Product (x * y) �
In order to be a monoid, the mappend operation is supposed to be associative (but not
necessarily commutative) and mempty should be the identity for it, that is, x `mappend`
mempty == mempty `mappend` x == x for any x. Having the Monoid typeclass around lets
us write functions more generally to work on any monoid — for example, the mconcat

Section 1 Problems That Don’t Involve Monads 5

function that’s part of the typeclass specification above generalizes the built in sum and
product functions among others. We’ll see another example in the next problem.

(a) Write the built-in sum and product functions in terms of monoid functions.

(b) Make lists an instance of Monoid under concatenation. (This is actually already part of
Data.Monoid.)

(c) Look up the compare function and the Monoid instance for Ordering. Use this monoid
structure to write a function that compares strings in dictionary order. (The zipWith
function might be useful. Note that this way of comparing strings is the built-in one.)

(d) If b is a Monoid and a is any type at all, make a Monoid instance for a -> b.

(e) (*) Look up the functions sortBy (in Data.List) and comparing (in Data.Ord) and use
the previous part to write a function that sorts a list of strings first alphabetically and
then by length.

12. This problem is the first step on our way to writing an interpreter. Our interpreter will run in
three steps. The first step, called parsing, involves taking the text of the program and turning
it into a data structure, called an abstract syntax tree or AST, which represents the program.
The second step involves taking the AST and running the corresponding program.

We will begin tackling the second part. These are the data structures we will worry about in
this problem:

data Expression =Var String | -- a variableIntLit Integer | -- an integer literalBoolLit Bool | -- a boolean literalUnaryOp String Expression | -- a unary operation (takes one value)BinaryOp String Expression Expression -- a binary operation (takes two values)
deriving Show

data Value = IntVal Integer | BoolVal Bool deriving Show �
The file Parse.hs that I’ve provided exports a function parseExpression :: String ->
Expression which might be useful for testing purposes. (If you want to figure out parsing
for yourself later on in Problem 22, be sure not to peek!) For example:

parseExpression "-(x/2)" == UnaryOp "-" (BinaryOp "/" (Var "x") (IntLit 2))parseExpression "a and not b" == BinaryOp "and" (Var "a") (UnaryOp "not" (Var "b"))parseExpression "x+5*y" == BinaryOp "+" (Var "x") (BinaryOp "*" (IntLit 5) (Var "y"))parseExpression "true or x > y + 5" ==BinaryOp "or" (BoolLit True) (BinaryOp ">" (Var "x") (BinaryOp "+" (Var "y") (IntLit 5))) �
You should play with the parseExpression function for a while if it’s not clear.

Write a function evalExpr :: [(String, Value)] -> Expression -> Value which takes
an expression to a value. The first parameter is an environment which contains a correspon-
dence between variable names and values. Throw an error if you are unable to evaluate the
expression. The operators we will use are "+", "-", "*", "/", "<", ">", "==", "and", "or", and
"not". All are binary except "not" and the unary version of "-". (You may find the built-in
function lookup somewhat useful.)

Section 2 Problems That Involve Monads 6

2 Problems That Involve Monads
13. (a) Write lengths :: IO () which, when executed, continually asks the user for input

and, every time the user hits enter, prints the length of the line they just typed. For
example (every other line is typed by the user):

> lengthshey3seven5four4 �
(b) Generalize lengths to a function repeatedly :: Show a => (String -> a) -> IO

() so that repeatedly f repeatedly asks the user for a line s of input and prints f s;
for example, lengths is repeatedly length.

(c) Generalize this to while :: Show a => (String -> Bool) -> (String -> a) -> IO
() so that while p f acts like repeatedly f until p f is false:

> while (\s -> length s < 2 || s!!1 /= 'b') reversehello"olleh"kayak"kayak"ebb �
14. Write an IO Bool that makes the user play the “guess my number” game. The computer

picks a random number between 1 and 100, asks the user for a guess, and tells the user
whether its number is higher or lower than the guess. The user should be allowed to guess
six times. If the number has been guessed by then, return True; otherwise return False.
(The built-in randomRIO might be helpful.)

15. (a) Look up the functions fmap, liftA, (<$>), and liftM. What is the relationship between
them?

(b) What about liftM2 and liftA2? Can you define a version of liftM2 or liftA2 for
functors? If so, do it; if not, why not?

(c) Define liftA2 in terms of (<$>) and (<*>).

16. We’re going to adjust the interpreter from Problem 12 to throw errors more intelligently.
(The code you write in this problem won’t be used in future problems about the interpreter.)
The type EvalError is defined in Types.hs as follows:

data EvalError =UnknownVariable | -- tried to use a variable that wasn't in the environmentUnknownOperator | -- referred to a nonexistent operatorTypeError -- tried to apply an operator to the wrong type of input
deriving Show �

Use the fact that Either EvalError is a monad to rewrite the evalExpr function from
Problem 12 to return an Either EvalError Value.

17. Look up the contents of Control.Monad on the Internet, or just go to http://www.haskell.
org/ghc/docs/latest/html/libraries/base/Control-Monad.html if you can’t find it. Read

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Monad.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Control-Monad.html

Section 2 Problems That Involve Monads 7

the descriptions of the following functions and provide your own implementations. Try to
figure out what they should do just from the type, the name, and the information on the
page.

(a) mapM (Try not writing this in terms of sequence.)

(b) sequence
(c) forever
(d) foldM
(e) filterM
(f) replicateM
(g) join

18. Do Problem 11 before this one.

(a) The typeclass MonadPlus is for monads that are also monoids:

class Monad m => MonadPlus m wheremzero :: m amplus :: m a -> m a -> m a �
Make lists an instance of MonadPlus. Also make Maybe a an instance of MonadPlus so
that adding two values produces the second value if the first is Nothing and otherwise
produces the first value. (This is also already defined in the standard libraries.)

(b) Use the mplus you just wrote for Maybe and the built-in function find to write, in
60 characters or less, a function f :: Num a => [a] -> Maybe a that takes a list of
numbers and returns the first number less than 3 or, if there isn’t one, the first number
greater than 3.

(c) Look up the guard function in Control.Monad. What are these functions’ types? What
do they do?

f p xs =
do x <- xsguard $ p xreturn x

g n xs =
do i <- [1..n]map (\x -> (i,x)) xs �

(d) (*) Write a Sudoku solver. There is code in the file Sudoku.hs to get you over the tedious
bits.

19. Do Problem 10e before this one. Look up the contents of Data.Foldable on the Internet, or
just go to http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Foldable.
html if you can’t find it. Read the descriptions of the following functions and provide your
own implementations.

(a) traverse_
(b) mapM_
(c) maximum
(d) elem

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Foldable.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Foldable.html

Section 2 Problems That Involve Monads 8

20. The State monad allows you to perform computations that can read and modify some state.
It’s defined as a newtype wrapper, and it’s an instance of Monad in the following way:

newtype State s a = State { runState :: s -> (a, s) }
instance Monad (State s) wherereturn a = State $ \s -> (a, s)m >>= k = State $ \s -> let(a, s') = runState m s

in runState (k a) s' �
A stateful computation is a function that takes an initial state and computes some value and
a final state. Then return a is the function that keeps the state the same and just outputs a,
and stateful computations can be composed by feeding the output state from the first one
in as the input state to the second one.

Before doing these problems, look up how the get, put, and modify functions work.

(a) Consider the following definitions:

x :: State Integer Stringx = do modify (+1)n <- getreturn $ show n
y = sequence $ replicate 10 x �
What is the type of y? What does runState y do?

(b) The System.Random module defines a type called StdGen for representing random
number generators and a function mkStdGen :: Int -> StdGen which provides a
way of turning a “seed” number into a random number generator in some way.

Because of Haskell’s purity, it can be difficult to do things like generate random num-
bers that require some state to be kept. Look up the built-in functions random and
randomR and use the State monad to write a function that takes an integer n and a
StdGen and produces a list of n random integers in which the i’th is taken from the
range [1..i].

21. This problem continues our work on the interpreter which was begun in Problem 12. You
should also probably do Problem 20 before this one.

In doing research for the problem about State, you may have noticed references to a
typeclass called MonadState, for example in the types of get and put:

get :: MonadState s m => m sput :: MonadState s m => s -> m () �
Of course, State s is an instance of MonadState, but with get and put having these types,
they work on more than just (State s a)’s. In fact, get and put are part of the definition of
MonadState.

How do you get new instances of MonadState? One way is to use the built-in state monad
transformer:

newtype StateT s m a = StateT {runStateT :: s -> m (a, s)} �
Monad transformers give ways of combining the effects of monadic computations. For
example, StateT Integer IO String represents computations that return a String but,

Section 2 Problems That Involve Monads 9

along the way, may have I/O effects and can also read from and write to a state of type
Integer
StateT isn’t the only monad transformer out there; there’s a ListT, a MaybeT, and many
more. You can read more about them in the references at the beginning of this document.

You’ve already written a function for our interpreter that evaluates expressions; now we’ll do
the part that runs whole programs. This is the type we’ll use:

data Statement =Assign String Expression | -- assign a value to a variableIf Expression Statement Statement | -- if the expression evaluates to true,-- execute the first statement, otherwise-- the secondWhile Expression Statement | -- execute the statement as long as the-- expression evaluates to trueBlock [Statement] | -- execute these statements in orderPrint Expression | -- print the value of the expressionEmpty -- do nothing
deriving Show �

Before, we used the type [(String, Value)] to represent the correspondence between
variables and values. Since we’re now going to be repeatedly updating it now, it might be
easier to represent it using the type Map from Data.Map. If you want to go this route, look up
how Maps work, especially the functions lookup and insert. Otherwise you’ll have to write a
function that modifies the [(String, Value)] environment when a value is assigned to a
variable that already exists.

Write a function that takes a Statement to a monad that evaluates it. The file Eval.hs has
a template you can work from. There are helper functions parseString :: String ->
Statement and parseFile :: String -> IO Statement in Parse.hs that you can use to
generate abstract syntax trees.

22. The final step in writing the interpreter is writing the parser that transforms strings into
AST’s. To do this, you should work from the template in ParseTemplate.hs. We’ll be us-
ing the Parsec package, which defines a monad specially designed for parsing. Do some
research on Parsec package before starting. In particular, learn how to use buildExpression-
Parser, Text.ParserCombinators.Parsec.Token (particularly the functions mentioned in
the template), and the operator (<|>).

Section 2 Problems That Involve Monads 10

Language Specification
This is an informal description of the language you’ll be writing an interpreter for in Problems 12,
21, and 22.

An expression is one of the following things:

• A variable name, which must begin with a letter and contain only letters, numbers, and
underscores.

• An integer.

• One of the constants true or false.

• A unary operator applied to an expression. The unary operators are - and not.

• A binary operator applied to two expressions. The binary operators are and, or, +, -, *, /, ==,
<, and >.

• Parentheses surrounding another expression.

There are two types an expression might have: integer and boolean. The operators work on
types in the way you would expect. It’s not possible to tell the type of an expression at compile
time because variables can change types as they are assigned new values.

A statement is one of the following things:

• An assignment: v := e;, where v is a variable name and e is an expression. This has the
effect of evaluating e and assigning the resulting value to v.

• An if statement: if c then s; else t;, where c is an expression which should evaluate
to a boolean and s and t are statements. If c evaluates to true, then s is executed, otherwise
t is. The else t; can be omitted, and both s and t are allowed to be blocks.

• A while statement: while c do s;, where c is an expression which should evaluate to a
boolean and s is a statement. This has the effect of executing s as long as c keeps evaluating
to true. As before, s can be a block.

• A print statement: print e;. This prints the value of e followed by a newline.

• A block statement: {s1; s2; ... sn;}. This executes the enclosed statements in order.
Useful for the bodies of if and while statements.

All statements except for blocks (and therefore if and while statements which end in blocks)
should end in a semicolon.

The following program computes the factorial of 7 and prints it.

a := 7;fact := 1;
i := a;while i > 0 do{ fact := fact * i;i := i - 1;}
print fact; �

	Problems That Don't Involve Monads
	Problems That Involve Monads

